summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--experiment/analysis/analysis.org57
-rw-r--r--experiment/analysis/analysis.pdfbin127259 -> 128522 bytes
-rw-r--r--experiment/analysis/analysis.tex116
-rw-r--r--experiment/analysis/tools.py60
4 files changed, 127 insertions, 106 deletions
diff --git a/experiment/analysis/analysis.org b/experiment/analysis/analysis.org
index 7f6a58d..e726046 100644
--- a/experiment/analysis/analysis.org
+++ b/experiment/analysis/analysis.org
@@ -4,10 +4,11 @@
* Imports
#+begin_src python :results none
import pandas as pd
-import pickle
from pathlib import Path
from pprint import pprint
+import tools
+
#+end_src
* Constants
@@ -18,13 +19,6 @@ procedures = ["1", "2", "3", "4", "5", "6", "overall"]
#+end_src
* Import Data
-#+begin_src python :results none
-def unpickle(pkl):
- with open(pkl, "rb") as f:
- data = pickle.load(f)
- return data
-#+end_src
-
** Conditions
#+begin_src python
conditions = [x.stem for x in data_path.iterdir() if x.is_dir()]
@@ -35,59 +29,24 @@ conditions
| random | fixed | blocked |
** Data
-#+begin_src python
+#+begin_src python :results none
data = {}
for condition in conditions:
data[condition] = {}
for vp in (data_path / condition).iterdir():
- data[condition][vp.stem] = unpickle(vp / "vp.pkl")
-#+end_src
+ data[condition][vp.stem] = tools.unpickle(vp / "vp.pkl")
-#+RESULTS:
-: None
+data_train, data_test = tools.train_test_split(data)
+#+end_src
* Basic statistics
** Total percent correct
To find out how well VP solved the tasked, we calculate the accuracy for train
and test phase.
-#+begin_src python :results none
-def count_correct(vp, trials):
- trials_correct = {}
- for proc in procedures:
- trials_correct[proc] = 0
- for sample in trials:
- for proc in vp[sample]["procedure_order"]:
- vp_ans = vp[sample][proc]["answer"]
- for c in vp_ans:
- if not c.isdigit():
- vp_ans = vp_ans.replace(c, "")
- vp_ans = int(vp_ans)
- if vp_ans == vp[sample]["water_sample"][proc][0]:
- trials_correct[proc] += 1
- return trials_correct
-#+end_src
-
-#+begin_src python :results none
-def total_accuracy(vp):
- train_total = len(train) * len(vp[train[0]]["procedure_order"])
- test_total = len(test) * len(vp[test[0]]["procedure_order"])
-
- acc_train = count_correct(vp, train)
- acc_test = count_correct(vp, test)
-
- acc_train = sum([acc_train[x] for x in acc_train.keys()]) / train_total
- acc_test = sum([acc_test[x] for x in acc_test.keys()]) / test_total
-
- return acc_train, acc_test
-#+end_src
-
#+begin_src python
-train = [x for x in vp.keys() if "train" in x]
-test = [x for x in vp.keys() if "test" in x]
-
condition = "random"
-df = pd.DataFrame([total_accuracy(data[condition][vp]) for vp in data[condition].keys()], index=data[condition].keys(), columns=["train", "test"])
+df = pd.DataFrame([tools.total_accuracy(data[condition][vp], procedures) for vp in data[condition].keys()], index=data[condition].keys(), columns=["train", "test"])
df
#+end_src
@@ -116,7 +75,7 @@ To investigate, we look at the per procedure accuracy per subject.
#+begin_src python
condition = "random"
proc_accs = [
- count_correct(data[condition][vp], data[condition][vp].keys())
+ tools.count_correct(data[condition][vp], data[condition][vp].keys(), procedures)
for vp in data[condition].keys()
]
for vp in proc_accs:
diff --git a/experiment/analysis/analysis.pdf b/experiment/analysis/analysis.pdf
index c12a0e2..751625d 100644
--- a/experiment/analysis/analysis.pdf
+++ b/experiment/analysis/analysis.pdf
Binary files differ
diff --git a/experiment/analysis/analysis.tex b/experiment/analysis/analysis.tex
index 2896b4f..5b56bc8 100644
--- a/experiment/analysis/analysis.tex
+++ b/experiment/analysis/analysis.tex
@@ -1,4 +1,4 @@
-% Created 2023-10-23 Mon 20:13
+% Created 2023-10-28 Sat 19:43
% Intended LaTeX compiler: pdflatex
\documentclass[11pt]{article}
\usepackage[utf8]{inputenc}
@@ -30,30 +30,26 @@
\tableofcontents
\section{Imports}
-\label{sec:orgf19bf7c}
+\label{sec:orgbdc2c77}
\begin{verbatim}
import pandas as pd
-import pickle
from pathlib import Path
+from pprint import pprint
+
+import tools
\end{verbatim}
\section{Constants}
-\label{sec:orgb587203}
+\label{sec:orgcb8c537}
\begin{verbatim}
data_path = Path("/home/niclas/repos/uni/master_thesis/experiment/data")
procedures = ["1", "2", "3", "4", "5", "6", "overall"]
\end{verbatim}
\section{Import Data}
-\label{sec:org3427b7b}
-\begin{verbatim}
-def unpickle(pkl):
- with open(pkl, "rb") as f:
- data = pickle.load(f)
- return data
-\end{verbatim}
+\label{sec:org87e67b0}
\subsection{Conditions}
-\label{sec:org9e15909}
+\label{sec:orga12f2b6}
\begin{verbatim}
conditions = [x.stem for x in data_path.iterdir() if x.is_dir()]
conditions
@@ -65,70 +61,55 @@ random & fixed & blocked\\[0pt]
\end{tabular}
\end{center}
\subsection{Data}
-\label{sec:org65d4664}
+\label{sec:orgcac95cb}
\begin{verbatim}
data = {}
for condition in conditions:
data[condition] = {}
for vp in (data_path / condition).iterdir():
- data[condition][vp.stem] = unpickle(vp / "vp.pkl")
+ data[condition][vp.stem] = tools.unpickle(vp / "vp.pkl")
+\end{verbatim}
+
+\begin{verbatim}
+None
+\end{verbatim}
+\subsection{Useful Subdata}
+\label{sec:org4384120}
+\begin{verbatim}
+# data_correct = {conditons[0]: {}, conditons[1]: {}, conditons[2]: {}}
+pass
+# for condition in conditions:
+# data_correct[condition] = None
\end{verbatim}
\begin{verbatim}
None
\end{verbatim}
\section{Basic statistics}
-\label{sec:orgea2a5f1}
+\label{sec:org44d0851}
\subsection{Total percent correct}
-\label{sec:org2eef721}
+\label{sec:org461b551}
To find out how well VP solved the tasked, we calculate the accuracy for train
and test phase.
\begin{verbatim}
-def percent_correct(vp):
- train = [x for x in vp.keys() if "train" in x]
- test = [x for x in vp.keys() if "test" in x]
-
- train_total = len(train) * len(vp[train[0]]["procedure_order"])
- test_total = len(test) * len(vp[test[0]]["procedure_order"])
-
- train_correct = 0
- test_correct = 0
-
- def count_correct(trials):
- trials_correct = 0
- for sample in trials:
- for proc in vp[sample]["procedure_order"]:
- vp_ans = vp[sample][proc]["answer"]
- for c in vp_ans:
- if not c.isdigit():
- vp_ans = vp_ans.replace(c, "")
- vp_ans = int(vp_ans)
- if vp_ans == vp[sample]["water_sample"][proc][0]:
- trials_correct += 1
- return trials_correct
-
- return count_correct(train) / train_total, count_correct(test) / test_total
-\end{verbatim}
-
-\begin{verbatim}
condition = "random"
-df = pd.DataFrame([percent_correct(data[condition][vp]) for vp in data[condition].keys()], columns=["train", "test"])
+df = pd.DataFrame([tools.total_accuracy(data[condition][vp], procedures) for vp in data[condition].keys()], index=data[condition].keys(), columns=["train", "test"])
df
\end{verbatim}
\begin{verbatim}
- train test
-0 0.822222 0.820000
-1 0.966667 0.800000
-2 0.973333 0.980000
-3 0.911111 0.960000
-4 0.906667 0.980000
-5 0.924444 0.943333
-6 0.957778 0.926667
-7 0.857778 0.946667
-8 0.962222 0.970000
-9 0.982222 0.986667
+ train test
+vp12 0.822222 0.820000
+vp19 0.966667 0.800000
+vp15 0.973333 0.980000
+vp17 0.911111 0.960000
+vp20 0.906667 0.980000
+vp10 0.924444 0.943333
+vp16 0.957778 0.926667
+vp13 0.857778 0.946667
+vp18 0.962222 0.970000
+vp14 0.982222 0.986667
\end{verbatim}
Most subjects have an accuracy of over 95\% in both training and test phase.
@@ -139,10 +120,31 @@ present in both, or only one of the two phases.
To investigate, we look at the per procedure accuracy per subject.
\begin{verbatim}
-pass
+condition = "random"
+proc_accs = [
+ tools.count_correct(data[condition][vp], data[condition][vp].keys(), procedures)
+ for vp in data[condition].keys()
+]
+for vp in proc_accs:
+ for proc in vp.keys():
+ vp[proc] /= len(next(iter(data[condition].values())).keys())
+df = pd.DataFrame(proc_accs, index=data[condition].keys())
+df
\end{verbatim}
\begin{verbatim}
-None
+ 1 2 3 4 5 6 overall
+vp12 0.992 0.592 0.392 0.976 0.960 1.000 0.016
+vp19 1.000 0.992 0.000 0.576 0.992 0.992 0.848
+vp15 0.992 0.992 0.960 0.392 0.592 1.000 0.928
+vp17 0.392 0.968 0.584 1.000 1.000 0.992 0.648
+vp20 0.992 0.376 0.952 0.976 0.976 0.560 0.784
+vp10 0.968 0.360 0.592 0.984 0.984 0.992 0.712
+vp16 0.976 0.600 0.376 0.976 0.992 1.000 0.752
+vp13 0.384 0.960 0.928 0.560 0.992 0.968 0.568
+vp18 0.976 0.976 0.960 0.392 0.600 0.984 0.904
+vp14 0.992 0.976 0.992 0.976 0.400 0.600 0.968
\end{verbatim}
+
+We can see that most vp have around 2 procedures with accuracy of around 50\%
\end{document} \ No newline at end of file
diff --git a/experiment/analysis/tools.py b/experiment/analysis/tools.py
new file mode 100644
index 0000000..d32ccd3
--- /dev/null
+++ b/experiment/analysis/tools.py
@@ -0,0 +1,60 @@
+#!/usr/bin/env python3
+
+import pickle
+from copy import deepcopy
+
+def unpickle(pkl):
+ with open(pkl, "rb") as f:
+ data = pickle.load(f)
+ return data
+
+
+def count_correct(vp, trials, procedures):
+ trials_correct = {}
+ for proc in procedures:
+ trials_correct[proc] = 0
+ for sample in trials:
+ for proc in vp[sample]["procedure_order"]:
+ vp_ans = vp[sample][proc]["answer"]
+ for c in vp_ans:
+ if not c.isdigit():
+ vp_ans = vp_ans.replace(c, "")
+ vp_ans = int(vp_ans)
+ if vp_ans == vp[sample]["water_sample"][proc][0]:
+ trials_correct[proc] += 1
+ return trials_correct
+
+
+def total_accuracy(vp, procedures):
+ train = [x for x in vp.keys() if "train" in x]
+ test = [x for x in vp.keys() if "test" in x]
+
+ train_total = len(train) * len(vp[train[0]]["procedure_order"])
+ test_total = len(test) * len(vp[test[0]]["procedure_order"])
+
+ acc_train = count_correct(vp, train, procedures)
+ acc_test = count_correct(vp, test, procedures)
+
+ acc_train = sum([acc_train[x] for x in acc_train.keys()]) / train_total
+ acc_test = sum([acc_test[x] for x in acc_test.keys()]) / test_total
+
+ return acc_train, acc_test
+
+
+def train_test_split(data):
+ def delete_trials(data, string):
+ new_dict = {}
+ for cond in data.keys():
+ new_dict[cond] = {}
+ for vp in data[cond].keys():
+ new_dict[cond][vp] = {}
+ for trial in data[cond][vp].keys():
+ if string in trial:
+ new_dict[cond][vp][trial] = data[cond][vp][trial]
+ return new_dict
+ data_train = delete_trials(data, "train")
+ data_test = delete_trials(data, "test")
+
+ return data_train, data_test
+
+print("imported tools")