diff options
Diffstat (limited to 'experiment/analysis/analysis.org')
-rw-r--r-- | experiment/analysis/analysis.org | 103 |
1 files changed, 103 insertions, 0 deletions
diff --git a/experiment/analysis/analysis.org b/experiment/analysis/analysis.org new file mode 100644 index 0000000..e726046 --- /dev/null +++ b/experiment/analysis/analysis.org @@ -0,0 +1,103 @@ +#+title: Analysis +#+PROPERTY: header-args:python+ :session *python* :exports both :tangle yes + +* Imports +#+begin_src python :results none +import pandas as pd +from pathlib import Path +from pprint import pprint + +import tools + +#+end_src + +* Constants +#+begin_src python :results none +data_path = Path("/home/niclas/repos/uni/master_thesis/experiment/data") + +procedures = ["1", "2", "3", "4", "5", "6", "overall"] +#+end_src + +* Import Data +** Conditions +#+begin_src python +conditions = [x.stem for x in data_path.iterdir() if x.is_dir()] +conditions +#+end_src + +#+RESULTS: +| random | fixed | blocked | + +** Data +#+begin_src python :results none +data = {} +for condition in conditions: + data[condition] = {} + for vp in (data_path / condition).iterdir(): + data[condition][vp.stem] = tools.unpickle(vp / "vp.pkl") + +data_train, data_test = tools.train_test_split(data) +#+end_src + +* Basic statistics +** Total percent correct +To find out how well VP solved the tasked, we calculate the accuracy for train +and test phase. + +#+begin_src python +condition = "random" +df = pd.DataFrame([tools.total_accuracy(data[condition][vp], procedures) for vp in data[condition].keys()], index=data[condition].keys(), columns=["train", "test"]) +df +#+end_src + +#+RESULTS: +#+begin_example + train test +vp12 0.822222 0.820000 +vp19 0.966667 0.800000 +vp15 0.973333 0.980000 +vp17 0.911111 0.960000 +vp20 0.906667 0.980000 +vp10 0.924444 0.943333 +vp16 0.957778 0.926667 +vp13 0.857778 0.946667 +vp18 0.962222 0.970000 +vp14 0.982222 0.986667 +#+end_example + +Most subjects have an accuracy of over 95% in both training and test phase. +Some however are notably lower, under 90% in either training or test phase, or +both. +This could be a systematic misunderstanding of specific equations, that are +present in both, or only one of the two phases. +To investigate, we look at the per procedure accuracy per subject. + +#+begin_src python +condition = "random" +proc_accs = [ + tools.count_correct(data[condition][vp], data[condition][vp].keys(), procedures) + for vp in data[condition].keys() +] +for vp in proc_accs: + for proc in vp.keys(): + vp[proc] /= len(next(iter(data[condition].values())).keys()) +df = pd.DataFrame(proc_accs, index=data[condition].keys()) +df +#+end_src + +#+RESULTS: +#+begin_example + 1 2 3 4 5 6 overall +vp12 0.992 0.592 0.392 0.976 0.960 1.000 0.016 +vp19 1.000 0.992 0.000 0.576 0.992 0.992 0.848 +vp15 0.992 0.992 0.960 0.392 0.592 1.000 0.928 +vp17 0.392 0.968 0.584 1.000 1.000 0.992 0.648 +vp20 0.992 0.376 0.952 0.976 0.976 0.560 0.784 +vp10 0.968 0.360 0.592 0.984 0.984 0.992 0.712 +vp16 0.976 0.600 0.376 0.976 0.992 1.000 0.752 +vp13 0.384 0.960 0.928 0.560 0.992 0.968 0.568 +vp18 0.976 0.976 0.960 0.392 0.600 0.984 0.904 +vp14 0.992 0.976 0.992 0.976 0.400 0.600 0.968 +#+end_example + +We can see that most vp have around 2 procedures with accuracy of around 50% |