summaryrefslogtreecommitdiff
path: root/experiment/analysis/analysis.org
diff options
context:
space:
mode:
Diffstat (limited to 'experiment/analysis/analysis.org')
-rw-r--r--experiment/analysis/analysis.org103
1 files changed, 103 insertions, 0 deletions
diff --git a/experiment/analysis/analysis.org b/experiment/analysis/analysis.org
new file mode 100644
index 0000000..e726046
--- /dev/null
+++ b/experiment/analysis/analysis.org
@@ -0,0 +1,103 @@
+#+title: Analysis
+#+PROPERTY: header-args:python+ :session *python* :exports both :tangle yes
+
+* Imports
+#+begin_src python :results none
+import pandas as pd
+from pathlib import Path
+from pprint import pprint
+
+import tools
+
+#+end_src
+
+* Constants
+#+begin_src python :results none
+data_path = Path("/home/niclas/repos/uni/master_thesis/experiment/data")
+
+procedures = ["1", "2", "3", "4", "5", "6", "overall"]
+#+end_src
+
+* Import Data
+** Conditions
+#+begin_src python
+conditions = [x.stem for x in data_path.iterdir() if x.is_dir()]
+conditions
+#+end_src
+
+#+RESULTS:
+| random | fixed | blocked |
+
+** Data
+#+begin_src python :results none
+data = {}
+for condition in conditions:
+ data[condition] = {}
+ for vp in (data_path / condition).iterdir():
+ data[condition][vp.stem] = tools.unpickle(vp / "vp.pkl")
+
+data_train, data_test = tools.train_test_split(data)
+#+end_src
+
+* Basic statistics
+** Total percent correct
+To find out how well VP solved the tasked, we calculate the accuracy for train
+and test phase.
+
+#+begin_src python
+condition = "random"
+df = pd.DataFrame([tools.total_accuracy(data[condition][vp], procedures) for vp in data[condition].keys()], index=data[condition].keys(), columns=["train", "test"])
+df
+#+end_src
+
+#+RESULTS:
+#+begin_example
+ train test
+vp12 0.822222 0.820000
+vp19 0.966667 0.800000
+vp15 0.973333 0.980000
+vp17 0.911111 0.960000
+vp20 0.906667 0.980000
+vp10 0.924444 0.943333
+vp16 0.957778 0.926667
+vp13 0.857778 0.946667
+vp18 0.962222 0.970000
+vp14 0.982222 0.986667
+#+end_example
+
+Most subjects have an accuracy of over 95% in both training and test phase.
+Some however are notably lower, under 90% in either training or test phase, or
+both.
+This could be a systematic misunderstanding of specific equations, that are
+present in both, or only one of the two phases.
+To investigate, we look at the per procedure accuracy per subject.
+
+#+begin_src python
+condition = "random"
+proc_accs = [
+ tools.count_correct(data[condition][vp], data[condition][vp].keys(), procedures)
+ for vp in data[condition].keys()
+]
+for vp in proc_accs:
+ for proc in vp.keys():
+ vp[proc] /= len(next(iter(data[condition].values())).keys())
+df = pd.DataFrame(proc_accs, index=data[condition].keys())
+df
+#+end_src
+
+#+RESULTS:
+#+begin_example
+ 1 2 3 4 5 6 overall
+vp12 0.992 0.592 0.392 0.976 0.960 1.000 0.016
+vp19 1.000 0.992 0.000 0.576 0.992 0.992 0.848
+vp15 0.992 0.992 0.960 0.392 0.592 1.000 0.928
+vp17 0.392 0.968 0.584 1.000 1.000 0.992 0.648
+vp20 0.992 0.376 0.952 0.976 0.976 0.560 0.784
+vp10 0.968 0.360 0.592 0.984 0.984 0.992 0.712
+vp16 0.976 0.600 0.376 0.976 0.992 1.000 0.752
+vp13 0.384 0.960 0.928 0.560 0.992 0.968 0.568
+vp18 0.976 0.976 0.960 0.392 0.600 0.984 0.904
+vp14 0.992 0.976 0.992 0.976 0.400 0.600 0.968
+#+end_example
+
+We can see that most vp have around 2 procedures with accuracy of around 50%