
1

Modeling of Transfer in Complex Tasks

Niclas Andreas Dobbertin
Technische Universität Darmstadt



2

Abstract
A model which simulates learning also has to account for the effect transfer has on new
skills. Learning a skill that shares steps with a previously learned one speeds up
acquisition. This thesis presents an ACT-R model of a task used by Frensch (1991) to
investigate transfer learning. It will give a general overview of learning in production
systems and explain the components of the model. Due to bugs in the used ACT-R
implementation no results can be presented, however pain points in working with
ACT-R will be discussed to motivate future work.



3

Modeling of Transfer in Complex Tasks
Introduction

When trying to understand how humans learn, transfer learning is particularly
interesting. Skills acquired by training can speed up acquisition of different skill through
some mechanism. Modeling this mechanism needs to take in account all of the steps the
mind goes through when solving a task to re-use, or rather transfer them to another
task. Unified Theories of Cognition are what Newell (1994) argues to be the approach to
gain a complete understanding of the human mind. Also called cognitive architectures,
they combine all of the specialties of the mind into one single framework, that ideally
completely mimics what the human mind does. Using such an architecture, it should be
possible to describe a task in detail and observe transfer learning to another task.

Transfer learning was previously examined by Frensch (1991) to differentiate the
transfer effects between learning the components of a task and learning the composition
of components in a task. They used an experiment shown by Elio (1986), which uses
multi-step mathematical equations, which have to be learned in different ordering
conditions. To test transfer, one equation is swapped to a new one and the speed of
learning it is taken. This kind of task seems appropriate to model in a cognitive
architecture to see how it predicts transfer learning.

ACT-R (Anderson et al., 2004) is an established cognitive architecture that uses
productions to model procedures in the mind. There are several methods that use these
productions to describe learning. Brasoveanu and Dotlačil (2021) compared different
reinforcement learning algorithms in one such method, although using a lexical task.
For this they created a re-implementation of ACT-R in python (Brasoveanu & Dotlačil,
2020), which seems like a good starting point to implement Elios task in a model.
Productions

Productions decide how a production system behaves and what actions it takes.
A production consists of two parts, a condition and an action (Table 1). All statements
listed in the condition must be fulfilled to make the production eligible for selection. In
ACT-R, conditions check for specific variable values most of the time, but can also
check if certain buffers are empty, full or had an error, e.g. when failing to retrieve
something from declarative memory. Only productions which have their conditions
satisfied by the current state of the model can be selected by it. Once a production has
been selected, its action will be executed. Productions in ACT-R change values of
variables and start visual, motor and memory related processes.

If the conditions of multiple productions are satisfied, ACT-R chooses the
production with the highest utility. Each production starts with a baseline utility value,
which gets updated by the model during its runtime.
Learning

There are a variety of methods production systems use to model learning.
ACT-R can adjust which production is given preference during selection or create new
productions based on existing ones and the models state.

When multiple productions are applicable to the current state, the production
that the model thinks is the most useful should be selected. How useful a production is



4

can be learned while the model is running and is modeled in ACT-R through a
reinforcement learning like process called utility learning.

Oftentimes a series of productions need to be executed in order, this can be
combined in to a single production which does all of the actions at once, saving time
deciding on which production to use. This method is called production compilation.
When two productions are successfully called in a row, a production compilation
process is started and combines both into a single production, if possible. Since the
compiled productions are specific to the buffer values when the compilation was done,
there can be many different combined productions of the same two productions. E.g. a
production starting retrieval of an addition fact and a production using the retrieved
fact can combine into specific addition-result combinations, skipping retrieval (Shown in
Table 2).

ACT-Rs subsymbolic system also models delays and accuracy of the declarative
memory, where retrieving memories can fail based on their activation strength.
Activation strength increases the more often a memory is created or retrieved. Learning
new facts and increasing their activation strength is also part of the learning process in
an ACT-R model.
Task

To investigate model behavior and potentially compare it to results from human
experiments, it was decided to use an adapted version of the setup described in Frensch
(1991), which was first used in Elio (1986). Subjects are put in charge of determining
the quality of water samples by performing simple mathematical operations with given
indicator values per water sample. A water sample has an algae, a solids and multiple
toxin and lime values, which are randomly generated for each sample. There are six
different 2-step equations that use these values and a seventh equation using all
previously calculated results to determine the final result (see Table 3). To solve a
procedure, subjects have to locate the values of used variables on the screen. Some
variables show multiple values, procedures using them indicate how it should be
selected after an underscore. For example x_2 means taking the second value of
variable x. Other procedures require finding the maximum or minimum value of a

Table 1
Example Production

IF
variable1 = true
variable2 = 10
THEN
variable2 = 9
press button

Note. A production consists of two parts: 1. The conditions (IF), which must be fulfilled for
the production to be available for selection. 2. The actions (THEN), which are performed
when the production is selected.



5

variable or of previous solutions. An example of how the screen could look during a
trial is shown in Figure 1.

The experiment starts with 75 acquisition trials, each representing a water
sample, in which a random choice of 6 procedures has to be solved in the order they are
presented. The last procedure is always picked in the selection process, as it uses all
previous results for a water sample to calculate the final solution. Afterwards 50
transfer trials take place, in which the third procedure from the acquisition phase is
switched for the unpicked one. There are three conditions that determine the order in
which procedures are presented in the acquisition phase, however the procedure for the
final result is always last. In the fixed condition, the order is randomized once at the
start and stays constant during all trials. In the random condition, procedure order is
randomized between each trial. In the blocked condition, the first procedure has to be
solved for all trials before moving on to the second procedure, etc. The transfer phase
always uses fixed order.

How modeled:

(a) Production 1

IF
operation = subtract
argument1 = x
argument2 = y
THEN
retrieve: x - y

(b) Production 2

IF
operation = subtract
retrieve = z
THEN
press button: z

(c) A Compiled Production

IF
operation = subtract
argument1 = 3
argument2 = 1
THEN
press button: 2

Table 2
Production Compilation

Note. Table 2a shows a production with the condition that the operation variable must be
“subtract”, and argument1 and 2 must have any values x and y. If selected, it starts retrieval
of the result of x − y from declarative memory. Production 2 (Table 2b) is selected when the
operation value is subtract as well, and the retrieval variable is filled with a value z. It then
starts a motor process to press button z. When the model executes both productions after
another, it starts the production compilation process with the current model state. E.g. in
Table 2c, if argument1 was 3 and argument2 was 1, it creates a new production which skips
retrieval to directly press the result, if the same model state happens again. That means for
each combination of x, y and z a different specific production can be created.



6

Figure 1
Screenshot of experiment display

Note. Example water sample presenting in an experiment using the adapted task from Frensch
(1991). In the first procedure, a subject has to find the smaller of Sandstein1 + Gifte1 and
Algen. First they need to find the value of Algen and the first values in the lists of Sandstein
and Gifte to substitute them into the equation. Next they can calculate the sum inside the
parenthesis and put the smaller value between it and Algen as the result.

Model
The goal of the model is an accurate representation of how a human would solve

this task and improve over time. Optimally the models solving time would, in each

Table 3
Experiment Procedures.

Procedures
(Sandstein4 − Sandstein2) ∗ Mineralien

(2 ∗ Algen) + Sandsteinmin

Giftemax + Giftemin

(Mineralien ∗ 2) − Gifte4
DasHöhere von (Gifte3 − Gifte2), (Sandstein3)
Das Kleinere von (Sandstein1 + Gifte1), (Algen)

100 − dem Höchstem aller Ergebnisse

Note. The seven translated procedures used in this experiment. Six of them are used in the
acquisition phase, in the transfer phase one procedure is swapped with the unused one. The
bottom procedure is always included as it calculates the total water quality.



7

condition, improve similarly to previous human results. Looking at the ways an ACT-R
model can improve, production compilation seems to be the important function
compared to utility or chunk learning. A lot of small subtasks have to be accomplished
for a single trial, such as finding correct variable values, solving multiple mathematical
operations and typing the answer. These steps however need to be repeated for each
trial and while the numbers and with them the mathematical operations can change a
bit, the overall order and structure of subtasks stays the same. Production compilation
therefore promises strong improvements to solving times, as many steps can be
combined into a single one, eliminating time deciding on the next step. Additionally
numbers in this task are often small, allowing some common operation to be saved as
productions in procedural memory, removing time calculating or trying to retrieve from
declarative memory.

Utility learning is needed to evaluate the usefulness of compiled productions, but
since the task and subtask order is very rigid, should have no important role in learning
otherwise. Chunk learning doesn’t seem impactful either, as there are too many
permutations of variable values and too few trials to memorize helpful information.

To complete the experiment in a manner a human adult would, the model is
given a baseline of knowledge and skill to start with. This includes basic knowledge of
possible numbers and mathematical operations it has to solve.
Implementation

The model was made using the ACT-R architecture (Anderson et al., 2004)
through the pyactr (Brasoveanu & Dotlačil, 2020) implementation. The base model
uses default parameters. To enable production compilation and utility learning, the
parameters “production_compilation” and “utility_learning” have to be set to “True”.
Due to implementation details in pyactr, the subsymbolic system has to be enabled as
well. Issues and workarounds when implementing the model will be reviewed in the
Discussion.

The model works with four different types of chunks specified. Number chunks
hold the number, its digits and the number one higher. Math operation chunks hold an
operation, two arguments and a result. Procedure chunks hold the operations, variables
and values that make up a procedure in the experiment. The math goal chunk is used
in the goal buffer and hold various slots used for operations, like the current operation,
arguments, counters and flags.

The model gets some basic knowledge that does not have to be learned in the
form of chunks set at model initialization. It knows each procedure already and can
retrieve its operations and values with an key. It still has to find the right key by
visually searching for the current procedure on the screen It knows all numbers from 0
to 999 through the number chunktype. It has math operation chunks for all greater/less
comparisons for numbers between 0 and 20. It has math operation chunks for addition
of numbers between 0 and 20.

All trials are generated before the simulation starts and ordered depending on
condition. The model uses an environment to simulate a computer screen. Elements are
arranged in columns with the values in rows below their column header. Every time the



8

user inputs an answer or the variables change, the environment variables are directly
updated. User input and trial change is detected from the model trace.

The model works through the tasks with a set of productions, which perform
mathematical operations, search the screen, input answers and organize order of
operations.
Greater/Less-than Operation

This pair operations compares two multi-digit numbers and sets the greater/less
number as answer. For each digit (hundreds, tens, ones) there is a set of productions
comparing that digit of the two numbers. Each production set for a digit requires all
higher-significant digits to be equal. That means that the productions comparing the
tens can only fire if the hundreds are equal and the productions comparing the ones can
only fire if both the hundreds and the tens are equal. The selected production now
retrieves a comparison of the two digits from declarative memory. Depending on the
result, either number 1 or number 2 will be written into the answer slot.
Addition Operation

This operation adds two numbers through column-addition. The first production
retrieves the sum of the ones digits of the two numbers. The sum is put into the ones
digit of the answer. Next it tries to retrieve an addition operation from memory, where
10 plus any number equals the previously found sum. If the retrieval fails, the result of
the ones addition was less than ten and no carry-over is necessary. If the retrieval
succeeds, a carry flag is set and the second addend of the retrieved operation (the part
over 10) is set as the ones digit answer. Now the sum of the tens digits of the numbers
is retrieved. If the carry flag is set, add 1 to the sum. Again check for remainder and set
a carry flag if necessary. Then the same repeats for the hundreds digits.
Multiplication Operation

This operation multiplies two numbers through repeated addition. Multiple
productions handle cases in which one of the arguments is 1 or 0 and directly set the
answer accordingly. First, it tries to retrieve the sum of the second argument plus itself
and sets a counter to 1. If the retrieval succeeds, set the answer to the sum and
increment the counter by 1. While the counter is not equal to argument 1, retrieve the
sum of argument 2 plus the result and increment counter. If the counter is equal to
argument 1, the operation is finished. If the retrieval of the sum fails, save arguments
and counter in different slots and change the current operation to addition, as well as
the next operation to multiplication. When the current operation is multiplication
again and there are values in the saved argument slots, restore arguments and continue.
Subtraction Operation

The subtraction algorithm uses the austrian method, by checking for each digit if
the subtrahend is greater than the minuend. If not, it can safely subtract the two digits
and move to the next one. If yes, the subtraction will be done after increasing the
minuend by 10. Additionally a carry variable will be set, which increases the
subtrahend by 1 on the next digit.



9

Motor System
The motor module is used to input the answers and to press continue. When the

current operation is to type the answer, the first production requests the tens digit to
be pressed on the keyboard. When the action is finished, the ones digit and space bar
to continue are requested to be pressed in turn.
Visual System

The visual module is used for various operations to find the current task or to
replace variables in a task with the values shown on the screen. The screen is organized
in columns with headers, so the visual module first searches for the correct column by
keyword. Now different kinds of searches will be performed dependent on what is
requested.

To find the next task, the search goes down the column of tasks and saves the
task at the current row. If there is nothing in the answer column at the same
y-coordinate, the currently saved task was not answered, the search is done. To find a
variable value by index, the search travels down the column while counting and stops at
the desired index. To find the max/min value of a variable, the search travels down all
values in the column, checks for each one if it is greater/less than the currently saved
value and replaces it if necessary. Once all values are checked, the search is finished.
Utility Operations

Several productions dictate in what order operations are executed. When the
operation slots are empty, the visual search for the next unanswered task is started.
When a task is found, productions check if the argument are already numbers and if
not, request the visual search for substitution with the values on screen. When a task is
finished, the result is saved in a slot and other slots are reset, starting task search again.
If the second task is finished, start the motor input of the answer.

One production detects if the current operation is finished and another operation
is queued, and sets the next operation.

Since operations use both the full numbers and their digits, a set of productions
fills digit slots with the digits of a number and vice versa.

Results
Without enabling the subsymbolic system and its learning algorithms, the

average time the model takes to solve a specific procedure stays the same over the
experiment. This is expected; while each finished mathematical operation does get
remembered by the model, the amount of argument with operation permutations is too
high to be useful in this few trials.

Due to multiple roadblocks in working with the subsymbolic system in pyactr, it
was not possible not simulate a full experiment run with it enabled. Details about these
difficulties will be reviewed in the Discussion.

Discussion
This model shows that it possible to implement the task in ACT-R and that it

should be possible for the model to produce task solving time for comparison with
human subjects. During development however, a variety of difficulties emerged and



10

ultimately prevented ACT-Rs learning functions to simulate human learning. An
ACT-R implementation in python, pyactr, was used to program this models, which
brought some pyactr-specific problems with it. Difficulties in re-implementing ACT-R
were already mentioned in Albrecht et al. (2014), who state that today ACT-R is
specified by its implementation, rather than a formal specification. The implementation
of production compilation in pyactr seems to include some critical bugs, causing the
model to crash when compiling some productions. While it showed that production
compilation works in most cases, this stops it from being utilized in a model and
prevented us from investigating its effect in our task. Another problem was the missing
implementation of relative coordinates in visual search, meaning scanning objects left to
right for a specific one is not possible and had to be circumvented by hard-coding all
possible object positions to search. Since it is developed by very few people, it is sadly
natural that specific parts and usages are not working correctly, despite being
functional in general.

In general, it was not clear how a production or set of productions has to be
written in order to achieve some task correctly. While ACT-R gives a lot of tools to
handle many situations, it was surprising that even even basic operations like
multi-digit addition or subtraction do not have an example implementation. To use the
goal buffer or the imaginal buffer, how to sequence tasks, how general or specific should
productions be and how much strict order should the goal buffer enforce were important
considerations during development and had to be answered more by feeling than by
knowledge from references. There are various models used in ACT-R tutorials to
introduce its capabilities, these however are very limited and don’t expand beyond very
simple tasks. Papers usually don’t include the exact model and productions used, which
leaves few examples and general guidelines to new model makers. Implementing new
models would be much easier, if something similar to a software library exists for
ACT-R. It could contain simple, common tasks like for example mathematical and
lexical operations, visual search and handling task switching or subgoals. Such a library
would additionally serve as an example of proper implementation of different
productions in ACT-R, giving guidelines to newer model makers.
Model Improvements

Most importantly, solving the production compilation problem and actually
comparing the models learning behavior with human data would be the next step from
this point on.

While model currently does not work correctly, there are a variety of
improvements possible after technical issues are removed. Mathematical operations
could be modeled much more general and to work with higher and negative numbers.
This would make it possible to learn mathematical facts from the ground up, instead of
relying on a set of given knowledge. Introducing multiple ways of doing an operation,
like addition by counting from 1 or from the first argument, as well as shortcuts like
swapping arguments in applicable operations, gives the model opportunity to utilize its
utility learning more. Another important improvement would be better switching
between tasks, as e.g. multiplication requires additions being performed. This required



11

a complex set of production, which a general task switching implementation could
simplify.

It would be interesting how other cognitive architectures behave in comparison
to ACT-R. SOAR (Laird, 2022) and especially PRIMs architecture (Taatgen, 2013),
which specializes in transfer of knowledge through small knowledge bits.



12

References
Albrecht, R., Giesswein, M., & Westphal, B. (2014). Towards formally founded act-r

simulation and analysis. Cognitive Processing, 15, S27–S28.
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004).

An integrated theory of the mind. Psychological review, 111 4, 1036–60.
https://api.semanticscholar.org/CorpusID:186640

Brasoveanu, A., & Dotlačil, J. (2020). The ACT-r cognitive architecture and its pyactr
implementation. In Language, cognition, and mind (pp. 7–37). Springer
International Publishing. https://doi.org/10.1007/978-3-030-31846-8_2

Brasoveanu, A., & Dotlačil, J. (2021). Reinforcement learning for production-based
cognitive models. Topics in Cognitive Science, 13 (3), 467–487.
https://doi.org/10.1111/tops.12546

Elio, R. (1986). Representation of similar well-learned cognitive procedures. Cognitive
Science, 10 (1), 41–73. https://doi.org/10.1207/s15516709cog1001_2

Frensch, P. A. (1991). Transfer of composed knowledge in a multistep serial task.
Journal of Experimental Psychology: Learning, Memory, and Cognition, 17 (5),
997–1016. https://doi.org/10.1037/0278-7393.17.5.997

Laird, J. E. (2022). Introduction to soar. https://arxiv.org/abs/2205.03854
Newell, A. (1994). Unified theories of cognition. Harvard University Press.

https://books.google.de/books?id=1lbY14DmV2cC
Taatgen, N. A. (2013). The nature and transfer of cognitive skills. Psychological Review,

120 (3), 439–471. https://doi.org/10.1037/a0033138

https://api.semanticscholar.org/CorpusID:186640
https://doi.org/10.1007/978-3-030-31846-8_2
https://doi.org/10.1111/tops.12546
https://doi.org/10.1207/s15516709cog1001_2
https://doi.org/10.1037/0278-7393.17.5.997
https://arxiv.org/abs/2205.03854
https://books.google.de/books?id=1lbY14DmV2cC
https://doi.org/10.1037/a0033138

	Implementation

