
1

Modeling of Transfer in Complex Tasks

Niclas Andreas Dobbertin
Technische Universität Darmstadt



2

Abstract
ABSTRACT



3

Modeling of Transfer in Complex Tasks
Introduction

Transfer learning is the ability to apply lessons learning from one task, to
another related or even unrelated task. Living in a complex environment like the real
world, a plethora of different tasks like navigating areas, finding things visually or
preparing a meal have to be done.

much more efficient if knowledge from tasks can be reused in other tasks
Frensch (1991) observed differences in learning speed depending on condition, i.e.

the order in which procedures are presented.
Cognitive Architectures, modeling learning, production systems, ACT-R, frensch

task
Productions

Productions decide how a production system behaves and what actions it takes.
A production consists of two parts, a condition and an action (Table 1). All statements
listed in the condition must be fulfilled to make the production eligible for selection. In
ACT-R, conditions check for specific variable values most of the time, but can also
check if certain buffers are empty, full or had an error, e.g. when failing to retrieve
something from declarative memory. Only productions which have their conditions
satisfied by the current state of the model can be selected by it. Once a production has
been selected, its action will be executed. Productions in ACT-R change values of
variables and start visual, motor and memory related processes.

If the conditions of multiple productions are satisfied, ACT-R chooses the
production with the highest utility. Each production starts with a baseline utility value,
which gets updated by the model during its runtime.

Table 1
Example Production

IF
variable1 = true
variable2 = 10
THEN
variable2 = 9
press button

Note. A production consists of two parts: 1. The conditions (IF), which must be fulfilled for
the production to be available for selection. 2. The actions (THEN), which are performed
when the production is selected.

Learning
Retrieval(activation) strength, utility learning, production compilation, . . .

There are a variety of methods production systems use to model learning.
ACT-R can adjust which production is given preference during selection or create new
productions based on existing ones and the models state.



4

When multiple productions are applicable to the current state, the production
that the model thinks is the most useful should be selected. How useful a production is
can be learned while the model is running and is modeled in ACT-R through a
reinforcement learning like process called utility learning.

Oftentimes a series of productions need to be executed in order, this can be
combined in to a single production which does all of the actions at once, saving time
deciding on which production to use. This method is called production compilation.
When two productions are successfully called in a row, a production compilation
process is started and combines both into a single production, if possible. Since the
compiled productions are specific to the buffer values when the compilation was done,
there can be many different combined productions of the same two productions. E.g. a
production starting retrieval of an addition fact and a production using the retrieved
fact can combine into specific addition-result combinations, skipping retrieval (Shown in
Table 2).

(do stuff allegory? learning general production from specific ones (not used))
ACT-Rs subsymbolic system also models delays and accuracy of the declarative

memory, where retrieving memories can fail based on their activation strength.
Activation strength increases the more often a memory is created or retrieved. Learning
new facts and increasing their activation strength is also part of the learning process in
an ACT-R model.

(a) Production 1

IF
operation = subtract
argument1 = x
argument2 = y
THEN
retrieve: x - y

(b) Production 2

IF
operation = subtract
retrieve = z
THEN
press button: z

(c) A Compiled Production

IF
operation = subtract
argument1 = 3
argument2 = 1
THEN
press button: 2

Table 2
Production Compilation

Note. Table 2a shows a production with the condition that the operation variable must be
“subtract”, and argument1 and 2 must have any values x and y. If selected, it starts retrieval
of the result of x − y from declarative memory. Production 2 (Table 2b) is selected when the
operation value is subtract as well, and the retrieval variable is filled with a value z. It then
starts a motor process to press button z. When the model executes both productions after
another, it starts the production compilation process with the current model state. E.g. in
Table 2c, if argument1 was 3 and argument2 was 1, it creates a new production which skips
retrieval to directly press the result, if the same model state happens again. That means for
each combination of x, y and z a different specific production can be created.

Task
To investigate model behavior and potentially compare it to results from human

experiments, it was decided to use an adapted version of the setup described in Frensch
(1991), which was first used in Elio (1986). Subjects are put in charge of determining



5

the quality of water samples by performing simple mathematical operations with given
indicator values per water sample. A water sample has an algae, a solids and multiple
toxin and sandstone values, which are randomly generated for each sample. There are
six different 2-step equations that use these values and a seventh equation using all
previously calculated results to determine the final result (see Table 3). To solve a
procedure, subjects have to locate the values of used variables on the screen. Some
variables show multiple values, procedures using them indicate how it should be
selected after an underscore. For example x_2 means taking the second value of
variable x. Other procedures require finding the maximum or minimum value of a
variable or of previous solutions. An example of how the screen could look during a
trial is shown in Figure 1.

The experiment starts with 75 acquisition trials, each representing a water
sample, in which a random choice of 6 procedures has to be solved in the order they are
presented. The last procedure is always picked in the selection process, as it uses all
previous results for a water sample to calculate the final solution. Afterwards 50
transfer trials take place, in which the third procedure from the acquisition phase is
switched for the unpicked one. There are three conditions that determine the order in
which procedures are presented in the acquisition phase, however the procedure for the
final result is always last. In the fixed condition, the order is randomized once at the
start and stays constant during all trials. In the random condition, procedure order is
randomized between each trial. In the blocked condition, the first procedure has to be
solved for all trials before moving on to the second procedure, etc. The transfer phase
always uses fixed order.

How modeled:

Table 3
Experiment Procedures.

Procedures
(Sandstein4 − Sandstein2) ∗ Mineralien

(2 ∗ Algen) + Sandsteinmin

Giftemax + Giftemin

(Mineralien ∗ 2) − Gifte4
DasHöhere von (Gifte3 − Gifte2), (Sandstein3)
Das Kleinere von (Sandstein1 + Gifte1), (Algen)

100 − dem Höchstem aller Ergebnisse

Note. The seven translated procedures used in this experiment. Six of them are used in the
acquisition phase, in the transfer phase one procedure is swapped with the unused one. The
bottom procedure is always included as it calculates the total water quality.



6

Figure 1
Screenshot of experiment display

Note. Example water sample presenting in an experiment using the adapted task from Frensch
(1991). In the first procedure, a subject has to find the smaller of Sandstein1 + Gifte1 and
Algen. First they need to find the value of Algen and the first values in the lists of Sandstein
and Gifte to substitute them into the equation. Next they can calculate the sum inside the
parenthesis and put the smaller value between it and Algen as the result.

Model
The goal of the model is an accurate representation of how a human would solve

this task and improve over time. Optimally the models solving time would, in each
condition, improve similarly to previous human results. Looking at the ways an ACT-R
model can improve, production compilation seems to be the important function
compared to utility or chunk learning. A lot of small subtasks have to be accomplished
for a single trial, such as finding correct variable values, solving multiple mathematical
operations and typing the answer. These steps however need to be repeated for each
trial and while the numbers and with them the mathematical operations can change a
bit, the overall order and structure of subtasks stays the same. Production compilation
therefore promises strong improvements to solving times, as many steps can be
combined into a single one, eliminating time deciding on the next step. Additionally
numbers in this task are often small, allowing some common operation to be saved as
productions in procedural memory, removing time calculating or trying to retrieve from
declarative memory.

Utility learning is needed to evaluate the usefulness of compiled productions, but
since the task and subtask order is very rigid, should have no important role in learning
otherwise. Chunk learning doesn’t seem impactful either, as there are too many



7

permutations of variable values and too few trials to memorize helpful information.
To complete the experiment in a manner a human adult would, the model is

given a baseline of knowledge and skill to start with. This includes basic knowledge of
possible numbers and mathematical operations it has to solve.
Implementation

chunktypes, pre-knowledge

The model was made using the ACT-R architecture (Anderson et al., 2004)
through the pyactr (Brasoveanu & Dotlačil, 2020) implementation. The base model
uses default parameters. To enable production compilation and utility learning, the
parameters “production_compilation” and “utility_learning” have to be set to “True”.
Due to implementation details in pyactr, the subsymbolic system has to be enabled as
well. Issues and workarounds when implementing the model will be reviewed in the
Discussion.

The model works with four different types of chunks specified. Number chunks
hold the number, its digits and the number one higher. Math operation chunks hold an
operation, two arguments and a result. Procedure chunks hold the operations, variables
and values that make up a procedure in the experiment. The math goal chunk is used
in the goal buffer and hold various slots used for operations, like the current operation,
arguments, counters and flags.

The model gets some basic knowledge that does not have to be learned in the
form of chunks set at model initialization. It knows each procedure already and can
retrieve its operations and values with an key. It knows all numbers from 0 to 999 specify

that it
still has
to find the
correct
procedure
to use?

through the number chunktype. It has math operation chunks for all greater/less
comparisons for numbers between 0 and 10. It has math operation chunks for addition

currently
has even
more
chunks
for some
reason,
check if
necessary

of numbers between 0 and 21.
All trials are generated before the simulation starts and ordered depending on

condition. The model uses an environment to simulate a computer screen. Elements are
aranged in columns with the values in rows below their column header. Everytime the

get the
pyactr tk
working
and put
screenshot

user inputs an answer or the variables change, the evironment variables are directly
updated. User input and trial change is detected from the model trace.

The model works through the tasks with a set of productions, which perform
mathematical operations, search the screen, input answers and organize order of
operations.
Greater/Less-than Operation

Maybe better as figure note or in appx. and simpler/shorter description

This pair operations compares two multi-digit numbers and sets the greater/less
number as answer. For each digit (hundreds, tens, ones) there is a set of productions
comparing that digit of the two numbers. Each production set for a digit requires all
higher-significant digits to be equal. That means that the productions comparing the
tens can only fire if the hundreds are equal and the productions comparing the ones can
only fire if both the hundreds and the tens are equal. The selected production now
retrieves a comparison of the two digits from declarative memory. Depending on the
result, either number 1 or number 2 will be written into the answer slot.



8

Addition Operation
This operation adds two numbers through column-addition. The first production

retrieves the sum of the ones digits of the two numbers. The sum is put into the ones
digit of the answer. Next it tries to retrieve an addition operation from memory, where
ten plus any number equals the previously found sum. If the retrieval fails, the result of maybe 10

instead
tenthe ones addition was less than ten and no carry-over is necessary. If the retrieval

succeeds, a carry flag is set and the second addend of the retrieved operation (the part
over ten) is set as the ones digit answer. Now the sum of the tens digits of the numbers
is retrieved. If the carry flag is set, add one to the sum. Again check for remainder and
set a carry flag if necessary. Then the same repeats for the hundreds digits.
Multiplication Operation

This operation multiplies two numbers through repeated addition. Multiple
productions handle cases in which one of the arguments is one or zero and directly set
the answer accordingly. First, it tries to retrieve the sum of the second argument plus
itself and sets a counter to one. If the retrieval succeeds, set the answer to the sum and
increment the counter by one. While the counter is not equal to argument 1, retrieve
the sum of argument 2 plus the result and increment counter. If the counter is equal to
argument 1, the operation is finished. If the retrieval of the sum fails, save arguments
and counter in different slots and change the current operation to addition, as well as
the next operation to multiplication. When the current operation is multiplication
again and there are values in the saved argument slots, restore arguments and continue.
Subtraction Operation

The subtraction algorithm uses the austrian method, by checking for each digit if
the subtrahend is greater than the minuend. If not, it can safely subtract the two digits
and move to the next one. If yes, the subtraction will be done after increasing the
minuend by 10. Additionally a carry variable will be set, which increases the
subtrahend by 1 on the next digit.
Motor System

The motor module is used to input the answers and to press continue. When the
current operation is to type the answer, the first production requests the tens digit to
be pressed on the keyboard. When the action is finished, the ones digit and spacebar to
continue are requested to be pressed in turn.
Visual System

The visual module is used for various operations to find the current task or to
replace variables in a task with the values shown on the screen. The screen is organized
in columns with headers, so the visual module first searches for the correct column by
keyword. Now different kinds of searches will be performed dependent on what is
requested.

To find the next task, the search goes down the column of tasks and saves the
task at the current row. If there is nothing in the answer column at the same
y-coordinate, the currently saved task was not answered, the search is done. To find a
variable value by index, the search travels down the column while counting and stops at



9

the desired index. To find the max/min value of a variable, the search travels down all
values in the column, checks for each one if it is greater/less than the currently saved
value and replaces it if necessary. Once all values are checked, the search is finished.
Utility Operations

Several productions dictate in what order operations are executed. When the
operation slots are empty, the visual search for the next unanswered task is started.
When a task is found, productions check if the argument are already numbers and if
not, request the visual search for substitution with the values on screen. When a task is
finished, the result is saved in a slot and other slots are reset, starting task search again.
If the second task is finished, start the motor input of the answer.

One production detects if the current operation is finished and another operation
is queued, and sets the next operation.

Since operations use both the full numbers and their digits, a set of productions
fills digit slots with the digits of a number and vice versa.

Figure 2
Logic Flow of Addition

Note. When each production is executed depending on state. Either example for one
operation or figures for all?

Results
Without enabling the subsymbolic system and its learning algorithms, the

average time the model takes to solve a specific procedure stays the same over the
experiment (Figure 3). This is expected; while each finished mathematical operation
does get remembered by the model, the amount of argument with operation
permutations is too high to be useful in this few trials.

Due to multiple roadblocks in working with the subsymbolic system in pyactr, it
was not possible not simulate a full experiment run with it enabled. Details about these
difficulties will be reviewed in the Discussion.

Figure 3
Mean solution time in acquisition and transfer phase

Note. Mean solution time of all six procedures of a water sample in blocks of five samples.

Figure 4
Comparison with human experiment

Discussion
Working with ACT-R/pyactr

no basic productions given (aside basic tutorial code), everything has to be implemented from scratch, papers using act-r very rarely
publish their model code



10

no/confusing task switching/subgoals

this model uses many different operations and modules of ACT-R and has to model each from scratch and handle task switching

vis: relative positions are not implemented, the visual search loops had to be unrolled to the required number of iterations and is not
general

Model Improvements
More in-depth modeling of all operations

track working memory usage



11

References
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004).

An integrated theory of the mind. Psychological review, 111 4, 1036–60.
https://api.semanticscholar.org/CorpusID:186640

Brasoveanu, A., & Dotlačil, J. (2020). The ACT-r cognitive architecture and its pyactr
implementation. In Language, cognition, and mind (pp. 7–37). Springer
International Publishing. https://doi.org/10.1007/978-3-030-31846-8_2

Elio, R. (1986). Representation of similar well-learned cognitive procedures. Cognitive
Science, 10 (1), 41–73. https://doi.org/10.1207/s15516709cog1001_2

Frensch, P. A. (1991). Transfer of composed knowledge in a multistep serial task.
Journal of Experimental Psychology: Learning, Memory, and Cognition, 17 (5),
997–1016. https://doi.org/10.1037/0278-7393.17.5.997

https://api.semanticscholar.org/CorpusID:186640
https://doi.org/10.1007/978-3-030-31846-8_2
https://doi.org/10.1207/s15516709cog1001_2
https://doi.org/10.1037/0278-7393.17.5.997

	Implementation

