summaryrefslogtreecommitdiff
path: root/bjoern/videoanalyse/post_processing.py
diff options
context:
space:
mode:
authorNiclas Dobbertin <niclas.dobbertin@stud.tu-darmstadt.de>2023-10-04 12:12:29 +0200
committerNiclas Dobbertin <niclas.dobbertin@stud.tu-darmstadt.de>2023-10-04 12:12:29 +0200
commitba078d599987608f0a75f0275834af19b3e2dae3 (patch)
tree6a3e9833c4e43b9721bd5f2a92a832ac8162ac21 /bjoern/videoanalyse/post_processing.py
parent5f174084dd7f1497dba624eaff4d6ffde118d149 (diff)
eval over all vps, result df
Diffstat (limited to 'bjoern/videoanalyse/post_processing.py')
-rw-r--r--bjoern/videoanalyse/post_processing.py34
1 files changed, 23 insertions, 11 deletions
diff --git a/bjoern/videoanalyse/post_processing.py b/bjoern/videoanalyse/post_processing.py
index a8d37c4..6ffff1e 100644
--- a/bjoern/videoanalyse/post_processing.py
+++ b/bjoern/videoanalyse/post_processing.py
@@ -3,27 +3,39 @@
import argparse
from pathlib import Path
from pprint import pprint
+import pandas as pd
import utils
argparser = argparse.ArgumentParser(description="OCR-Logfile evaluation")
-argparser.add_argument("vp_dir", help="VP Directory")
+argparser.add_argument("vp_dir", help="Directory with all VPs")
args = argparser.parse_args()
data_path = Path(args.vp_dir)
-video_path = next(data_path.glob("*.mkv"))
-ocr_path = data_path / "analysis_results.csv"
-log_path = data_path / f"{data_path.stem}.csv"
+all_vp = [x for x in data_path.iterdir() if x.is_dir()]
-df = utils.combine_ocr_logs(video_path, ocr_path, log_path)
-df = df.fillna('')
+vp_results = []
+for vp_path in all_vp:
+ video_path = next(vp_path.glob("*.mkv"))
+ ocr_path = vp_path / "analysis_results.csv"
+ log_path = vp_path / f"{vp_path.stem}.csv"
-df = utils.calc_levenshtein_distance(df)
+ df = utils.combine_ocr_logs(video_path, ocr_path, log_path)
+ df = df.fillna('')
+ df["vp_code"] = vp_path.stem
+ df = utils.calc_levenshtein_distance(df)
-url_groups = utils.group_urls(list(df["url"].values))
-pprint(len(url_groups))
+ url_groups = utils.group_urls(list(df["url"].values))
+ pprint(len(url_groups))
-df.to_csv(f"{data_path}/metrics.csv")
-utils.write_grouped_metrics(df, url_groups, data_path)
+ df.to_csv(f"{vp_path}/metrics.csv")
+ utils.write_grouped_metrics(df, url_groups, vp_path)
+
+ df = pd.read_csv(f"{vp_path}/metrics_grps.csv")
+
+ vp_results.append(df)
+
+evals = utils.evaluate_results(vp_results)
+pprint(evals)