summaryrefslogtreecommitdiff
path: root/modeling/productions_math.py
blob: 8a2ebc2e84252d7ebbf53eee60fadcc6e9fc9d7d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#!/usr/bin/env python3

import pyactr as actr
import prod_addition
import prod_comp


# https://stackoverflow.com/a/39644726
def get_digit(number, n):
    return number // 10**n % 10


def init():
    Model = actr.ACTRModel()

    DM = Model.decmem
    goal = Model.goal
    imaginal = Model.set_goal(name="imaginal", delay=0)

    actr.chunktype("number", ("number", "next", "ones", "tens", "hundreds"))
    actr.chunktype("math_goal", ("op", "task"))
    actr.chunktype(
        "math_op",
        (
            "op",
            "arg1",
            "arg2",
            "result",
            "hundreds1",
            "tens1",
            "ones1",
            "hundreds2",
            "tens2",
            "ones2",
            "hundreds_ans",
            "tens_ans",
            "ones_ans",
            "carry_ones",
            "carry_tens",
        ),
    )


    # Add numbers 0-999 to decmem
    for i in range(0, 1000):
        DM.add(
            actr.makechunk(
                f"number{str(i)}",
                "number",
                number=i,
                next=i + 1,
                ones=get_digit(i, 0),
                tens=get_digit(i, 1),
                hundreds=get_digit(i, 2),
            )
        )

    # Add comparison relations to single digit numbers
    for i in range(0, 11):
        for j in range(0, 11):
            DM.add(
                actr.makechunk(
                    f"greater{i}{j}",
                    "math_op",
                    op="greater",
                    arg1=i,
                    arg2=j,
                    result=max(i, j),
                )
            )
            DM.add(
                actr.makechunk(
                    f"lesser{i}{j}",
                    "math_op",
                    op="lesser",
                    arg1=i,
                    arg2=j,
                    result=min(i, j),
                )
            )
            DM.add(
                actr.makechunk(
                    f"plus{i}{j}", "math_op", op="add", arg1=i, arg2=j, result=i + j
                )
            )
    return Model, DM, goal, imaginal

def add_goal(goal, imaginal, op, arg1, arg2):

    goal.add(actr.makechunk("", "math_goal", op=op, task="calc"))
    imaginal.add(
        actr.makechunk(
            "",
            "math_op",
            op=op,
            arg1=arg1,
            arg2=arg2,
            ones1=get_digit(arg1, 0),
            tens1=get_digit(arg1, 1),
            hundreds1=get_digit(arg1, 2),
            ones2=get_digit(arg2, 0),
            tens2=get_digit(arg2, 1),
            hundreds2=get_digit(arg2, 2),
        )
    )


def unwind_prod():
    # Model.productionstring(
    #     name="init_math_op",
    #     string="""
    #     =g>
    #     isa     math_op
    #     task    None
    #     arg1    =num1
    #     arg2    =num2
    #     ==>
    #     +retrieval>
    #     isa     number
    #     number    =num1
    #     =g>
    #     task      unwind_left
    #     """,
    # )

    Model.productionstring(
        name="terminate_op",
        string="""
            =g>
            isa     math_goal
            task    finished_op
            =imaginal>
            isa     math_op
            result  =answer
            ==>
            ~g>""",
    )


def wait_input():
    op = input("op\n")
    arg1 = input("arg1\n")
    arg2 = input("arg2\n")
    return op, int(arg1), int(arg2)


def start():
    while(True):
        op, arg1, arg2 = wait_input()
        Model, DM, goal, imaginal = init()
        add_goal(goal, imaginal, op, arg1, arg2)

        # unwind_prod()
        add_prods = prod_addition.addition(Model)
        greater_prods = prod_comp.greater_than(Model)

        for prod in add_prods:
            print(prod)
            print("\n")

        # Model.goal.add(actr.makechunk("goal", "math_op", op="greater", arg1=5, arg2=9))
        print("goal: ", goal)
        print("imaginal: ", imaginal)
        x = Model.simulation()
        x.run()
        print("goal: ", goal)
        print("imaginal: ", imaginal)
        # imaginal.show("hundreds_ans")
        # imaginal.show("tens_ans")
        # imaginal.show("ones_ans")
        result_ones = str(getattr(imaginal._data.copy().pop(), "ones_ans"))
        result_tens = str(getattr(imaginal._data.copy().pop(), "tens_ans"))
        result_huns = str(getattr(imaginal._data.copy().pop(), "hundreds_ans"))

        result_num = result_huns + result_tens + result_ones
        print(result_num)
        # print(list(DM))
        numbers = [x for x in list(DM) if x.typename != "number" and x.typename != "math_op"]
        numbers = [x for x in list(DM) if x.typename != "number" and x.typename == "math_op"]
        # print(numbers)


if __name__ == "__main__":
    start()