summaryrefslogtreecommitdiff
path: root/modeling/productions_math.py
blob: 93c77625ff8350684308eeb6d06b80fe7701e868 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#!/usr/bin/env python3

import pyactr as actr
import prod_addition

Model = actr.ACTRModel()

DM = Model.decmem
goal = Model.goal
imaginal = Model.set_goal(name="imaginal", delay=0)

actr.chunktype("number", ("number", "next", "ones", "tens", "hundreds"))
actr.chunktype("math_goal", ("op", "task"))
actr.chunktype(
    "math_op",
    (
        "op",
        "arg1",
        "arg2",
        "result",
        "hundreds1",
        "tens1",
        "ones1",
        "hundreds2",
        "tens2",
        "ones2",
        "hundreds_ans",
        "tens_ans",
        "ones_ans",
        "carry_ones",
        "carry_tens",
    ),
)

goal.add(actr.makechunk("", "math_goal", op="add", task="calc"))
imaginal.add(
    actr.makechunk(
        "",
        "math_op",
        op="add",
        arg1=249,
        arg2=159,
        ones1=9,
        tens1=4,
        hundreds1=2,
        ones2=9,
        tens2=5,
        hundreds2=1,
    )
)


# https://stackoverflow.com/a/39644726
def get_digit(number, n):
    return number // 10**n % 10


# Add numbers 0-999 to decmem
for i in range(0, 1000):
    DM.add(
        actr.makechunk(
            f"number{str(i)}",
            "number",
            number=i,
            next=i + 1,
            ones=get_digit(i, 0),
            tens=get_digit(i, 1),
            hundreds=get_digit(i, 2),
        )
    )

# Add comparison relations to single digit numbers
for i in range(0, 11):
    for j in range(0, 11):
        DM.add(
            actr.makechunk(
                f"greater{i}{j}",
                "math_op",
                op="greater",
                arg1=i,
                arg2=j,
                result=max(i, j),
            )
        )
        DM.add(
            actr.makechunk(
                f"lesser{i}{j}",
                "math_op",
                op="lesser",
                arg1=i,
                arg2=j,
                result=min(i, j),
            )
        )
        DM.add(
            actr.makechunk(
                f"plus{i}{j}", "math_op", op="add", arg1=i, arg2=j, result=i + j
            )
        )


def unwind_prod():
    # Model.productionstring(
    #     name="init_math_op",
    #     string="""
    #     =g>
    #     isa     math_op
    #     task    None
    #     arg1    =num1
    #     arg2    =num2
    #     ==>
    #     +retrieval>
    #     isa     number
    #     number    =num1
    #     =g>
    #     task      unwind_left
    #     """,
    # )

    Model.productionstring(
        name="terminate_op",
        string="""
            =g>
            isa     math_goal
            task    finished_op
            =imaginal>
            isa     math_op
            result  =answer
            ==>
            ~g>""",
    )


def greater_than_prod():
    # TODO: if two numbers are equal, extra effort to determine greater one?
    prod_start = Model.productionstring(
        name="greater_start",
        string="""
            =g>
            isa     math_goal
            task    calc
            =imaginal>
            isa     math_op
            op      greater
            hundreds1   =hun1
            hundreds2   =hun1
            tens1       =tens1
            tens2       =tens1
            ones1       =ones1
            ones2       ~=ones1
            ones2       =ones2
            ==>
            +retrieval>
            isa     math_op
            op      greater
            arg1    =ones1
            arg2    =ones2
        """,
    )
    print(prod_start)

    Model.productionstring(
        name="greater_end",
        string="""
        =g>
        isa     math_goal
        =imaginal>
        op      greater
        =retrieval>
        isa     math_op
        op      greater
        result  =ans
        ==>
        =imaginal>
        isa     math_op
        result  =ans
        ~g>
        """,
    )



# print(DM)

# unwind_prod()
add_prods = prod_addition.addition(Model)
# greater_than_prod()

for prod in add_prods:
    print(prod)
    print("\n")

# Model.goal.add(actr.makechunk("goal", "math_op", op="greater", arg1=5, arg2=9))
print("goal: ", goal)
print("imaginal: ", imaginal)
x = Model.simulation()
x.run()
print("goal: ", goal)
print("imaginal: ", imaginal)
# imaginal.show("hundreds_ans")
# imaginal.show("tens_ans")
# imaginal.show("ones_ans")
result_ones = str(getattr(imaginal._data.copy().pop(), "ones_ans"))
result_tens = str(getattr(imaginal._data.copy().pop(), "tens_ans"))
result_huns = str(getattr(imaginal._data.copy().pop(), "hundreds_ans"))

result_num = result_huns + result_tens + result_ones
print(result_num)
# print(list(DM))
numbers = [x for x in list(DM) if x.typename != "number" and x.typename != "math_op"]
numbers = [x for x in list(DM) if x.typename != "number" and x.typename == "math_op"]
# print(numbers)