summaryrefslogtreecommitdiff
path: root/modeling/productions_math.py
blob: b6302bd112baacf5dfb837a0e7dceb425015a934 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#!/usr/bin/env python3

import pyactr as actr
from pprint import pprint

from model_init import init
import prod_addition
import prod_subtraction
import prod_comp
import prod_multi
import prod_numbers
import prod_procedure
import prod_motor
import prod_vis
import model_env


def add_goal(goal, op, arg1, arg2):

    goal.add(actr.makechunk("", "math_goal", op=op, task=op, arg1=arg1, arg2=arg2))


def wait_input():
    op = input("op\n")
    arg1 = input("arg1\n")
    arg2 = input("arg2\n")
    return op, int(arg1), int(arg2)


def add_proc(goal, proc):
    # input()
    goal.add(actr.makechunk("", "math_goal", proc=proc, ones_carry=""))


def start():
    condition = "fixed"
    training_N = 1
    test_N = 1

    stimuli = model_env.Stimuli(condition, training_N=training_N, test_N=test_N)

    pprint(stimuli.training_order)
    pprint(stimuli.test_order)

    stimuli.generate_stimuli()

    pprint(stimuli.training_stimuli)
    pprint(stimuli.test_stimuli)

    stimulus = stimuli.next_stimulus()

    # op, arg1, arg2 = wait_input()
    Model, DM, goal, imaginal, env = init()
    # Model.model_parameters["subsymbolic"] = True
    # Model.model_parameters["partial_matching"] = True
    # Model.model_parameters["activation_trace"] = True
    # Model.model_parameters["instantaneous_noise"] = .2
    # Model.model_parameters["utility_alpha"] = 0.5
    # Model.model_parameters["utility_noise"] = 0.5
    # Model.model_parameters["production_compilation"] = True
    # Model.model_parameters["utility_learning"] = True
    # add_goal(goal, op, arg1, arg2)
    add_proc(goal, "next_proc")

    prod_procedure.procedures(Model)
    number_prods = prod_numbers.number(Model)
    add_prods = prod_addition.addition(Model)
    sub_prods = prod_subtraction.subtraction(Model)
    greater_prods = prod_comp.greater_than(Model)
    less_prods = prod_comp.lesser_than(Model)
    multi_prods = prod_multi.multiplication(Model)
    motor_prods = prod_motor.procedures(Model)
    visual_prods = prod_vis.procedures(Model)

    for p in Model.productions:
        Model.productions[p].__setitem__("utility", 1)

    print("goal: ", goal)
    # print("imaginal: ", imaginal)
    sim = Model.simulation(
        gui=False,
        environment_process=env.environment_process,
        stimuli=stimulus,
        realtime=False,
        # triggers="space",
        triggers="b",
    )
    # pprint(sim._Simulation__pr.rules)
    # pprint(sim._Simulation__pr.ordered_rulenames)
    i = 1
    j = 1
    phase = "training"
    userinput = {"training": {}, "test": {}}
    while True:
        if j > training_N:
            phase = "test"
        sim.step()
        # print(goal)
        if sim.current_event.time >= 900:
            pprint(sim.current_event)
            break
        if "KEY PRESSED" in sim.current_event.action:
            if not stimuli.current_stimulus_id in userinput[phase]:
                userinput[phase][stimuli.current_stimulus_id] = {}
            if not str(i) in userinput[phase][stimuli.current_stimulus_id]:
                userinput[phase][stimuli.current_stimulus_id][str(i)] = []
            userinput[phase][stimuli.current_stimulus_id][str(i)].append(
                sim.current_event.action.split(":")[1].strip()
            )
        if (
            "RULE FIRED:" in sim.current_event.action
            and "number_expand_done and continue_with_next_op"
            in sim.current_event.action
        ):
            print("FIRED COMPILED RULE!!!!")
            # print(Model.productions[sim.current_event.action[12:]])
            # break
        if sim.current_event.action == "NO RULE FOUND":
            print(goal)
        if sim.current_event.action == "KEY PRESSED: SPACE":
            sim._Simulation__env.stimulus = stimuli.update_current_stimulus(
                f"Answer{i}",
                int(
                    "".join(userinput[phase][stimuli.current_stimulus_id][str(i)][:-1])
                ),
            )
            i += 1
            pprint(userinput)
            pprint("NEW PROC")
            if condition != "blocked":
                if i <= 6:
                    goal.add(
                        actr.makechunk("", "math_goal", proc="next_proc", ones_carry="")
                    )
                elif i >= 7 and j < training_N + test_N:
                    print("Stimulus Done, next stimulus")
                    sim._Simulation__env.stimulus = stimuli.next_stimulus()
                    goal.add(
                        actr.makechunk("", "math_goal", proc="next_proc", ones_carry="")
                    )
                    i = 1
                    j += 1
                elif i >= 7 and j >= training_N + test_N:
                    print("DONE")
                    break
            elif condition == "blocked":
                if i >= 6 * (training_N + test_N):
                    print("DONE")
                    break
                sim._Simulation__env.stimulus = stimuli.next_stimulus()

    # sim.run(max_time=25)
    print("training order: ", stimuli.training_order_list)
    print("test order: ", stimuli.test_order_list)
    pprint(userinput)
    print("Simulation time: ", sim.show_time())
    print("goal: ", goal)
    print(sim.current_event)
    # pprint(vars(sim))
    pprint(vars(sim._Simulation__env))
    # print(sim.__env)
    # sim.__printenv__()
    # print(envs.stimulus)
    # print("imaginal: ", imaginal)
    math_goals = [sim for sim in list(DM) if sim.typename == "procedure"]
    # print(math_goals)
    # pprint(Model.productions)

    # for p in Model.productions:
    #     print(p)
    #     print(Model.productions[p])#.__setitem__("utility", 1)
    #     print("\n")
    # print("#######used prods########")
    # print(sim.ordered_rulenames)

    # pprint(sim._Simulation__pr.rules)
    # pprint(sim._Simulation__pr.ordered_rulenames)


if __name__ == "__main__":
    start()